公司:上海龙魁工业技术有限责任公司
联系人:刘先生
电话:021-61995682
传真:
手机:13918558055,15358831790
邮编:200070
邮箱:770800751@qq.com
地址:上海市宝山区永清路77号
联系人:刘先生
电话:021-61995682
传真:
手机:13918558055,15358831790
邮编:200070
邮箱:770800751@qq.com
地址:上海市宝山区永清路77号
气体流量的测量
点击次数:3269 更新时间:2009-12-25
需要测量流量的气体种类繁多,本节讨论其中zui常见的空气、城市煤气、天然气和组分变化的气体。可用来测量气体流量的仪表种类繁多,本节结合四种典型气体重点讨论差压式(含均速管)、涡街式、旋进涡街式、超声式、气体涡轮、气体腰轮式流量计的应用。
3.2.1 压缩空气流量测量
压缩空气是企事业单位重要的二次能源,大多由电能或热能经压缩机转化而来。当空气压力值要求较低时,则由鼓风机产生。对由大量能源转化而来的工质进行管理,以收到节约能源和提高设备管理水平的效果,是压缩空气流量计量的主要目的。
在化工等生产过程中,有一种重要的工艺过程氧化反应,它是以空气作原料,和另外某种原料在规定的条件下进行化学反应。空气质量流量过大和过小,都会对安全生产、产品质量和贵重原料的消耗产生关键影响。在这种情况下,空气流量测量度要求特别高,多半还配有自动调节。
锅炉和各种工业炉窖中的燃烧过程,其本质也是氧化反应,对助燃空气流量的测量,虽然准确度要求不像化工生产中的氧化反应那样高,但对环境保护和经济燃烧、节约燃料也有重要意义。
(1) 空气流量测量的特点
①振动大。并非每一台空气流量计都安装在振动大的场所。但是安装在压缩厂房和鼓风机房的空气流量计都得考虑振动问题。这种振动主要来自压缩机和鼓风机,机器的振动通过空气管道或风管可以传到很远的地方。其中振动zui大的要数往复式压缩机,大型往复式压缩机运行时产生的振动往往带动厂房和周围地面一起振动,对相关空气流量计的准确而可靠的运行带来威胁。它引发杠杆式差压变送器支点移动而使仪表产生示值漂移。振动导致涡街流量传感器产生同振动频率相对应的干扰信号,引起流量示值大幅度偏高。
②气体带水。压缩空气取自大气,而大气中总是含有一定数量的水蒸气。水蒸气的含量用水蒸汽分压ps表示。大气中的水蒸气饱和分压是大气温度的函数(见表3.4)。在雨天和雾天,室外大气中的水蒸气分压达到饱和程度,即相对湿度达到100%,这时将大气压缩就如同压迫吸足水的海绵,随着体积的缩小,就有相应数量的水析出。这是压缩空气所以带水的简单原理。在晴好的天气,大气相对湿度较低,但随着其被压缩,体积缩小到原来的几分之一后,水蒸气分压会相应升高,也有可能进入饱和状态而析出水滴。
表3.4 空气中水分饱和含量
空气温度t/℃ | 0 | 10 | 20 | 30 | 40 | 50 |
饱和水蒸气压力ps/kPa | 0.6080 | 1.2258 | 2.3340 | 4.2463 | 7.3746 | 12.337 |
饱和水蒸气密度р/(kg/m3) | 0.0048 | 0.0094 | 0.0173 | 0.0304 | 0.0512 | 0.083 |
用来测量压缩空气流量的较大口径孔板流量计,孔板前常有积水,要影响测量准确度。引压管线中常有一段水,导致差压变送器测到的差压同节流装置所产生的差压不一致。这些都是空气带水引起误差的常见原因。除此之外,由于城区大气中氮氧化物含量较高,使得压缩空气所含水滴呈酸性,引起环室表面腐蚀、管道内壁腐蚀,使其表面变得粗糙。腐蚀产生的氧化铁在一定条件下变干燥时,很容易从管内壁脱落而被气流带到孔板前,这也会对流量示值产生影响。所以在停车检修时,应将这些粉状和块状的垃圾予以清除。
③脉动流。压缩机和鼓风机出口流体多数包含一定的脉动。例如往复式压缩机,表现为半波脉动,如图3.13所示。在现场可观察到压缩机和鼓风机的出口压力有明显摆动。其中正(定)排量鼓风机出口脉动频率较高,一般有几十赫兹,而往复式压缩机出口脉动频率较低,一般为几赫兹。流动脉动引起差压式流量计、涡街流量计等多种流量计示值偏高,引起浮子式流量计中的浮子上下跳动。消除和减弱流动脉动对流量计示值影响的常用方法有两个,一是在压缩机出口设置一只缓冲罐滤除脉动,而将流量计安装在缓冲后面。实际上往复式压缩机的的系统都是这样设计的;二是将流量计安装在远离脉动源的地方,这样可利用工艺管道的气容同其管阻构成低通滤波器衰减脉动。
图3.13流动脉动典型波形
(2)仪表选型 能够用来测量空气流量的仪表有多种,但是在现场实际使用的空气流量计,按其原理分,种类并不多。zui主要的有玻璃浮子流量计、节流式差压流量计、涡街流量计和均速管流量计等。
①浮子流量计。 浮子流量计在中型和小型实验装置上使用很广泛,这是因为浮子式流量计简单、直观、价格低廉,适合作一般指示。浮子流量计有玻璃锥管型和金属锥管型两大类,玻璃锥管型的不足之处是耐压不高和玻璃锥管易碎,另外,流体温度压力对示值影响大。一般可根据流体实际温度和压力按式(3.28)进行人工换算。式中由于引入рn,在被测气体不为空气时,也可利用该公式进行换算。
qv= qvf (3.28)
式中 qv――实际体积流量,Nm3/h;
qvf――仪表示值,m3/h;
ρn――被测气体在标准状态下的密度,kg/Nm3;
ρan――空气在标准状态下的密度,kg/Nm3;
Tn、Pn――气体在标准状态下的温度、压力;
Tf、Pf――气体在工作状态下的温度、压力。
②节流式差压流量计。节流式差压流量计在空气流量测量中有着悠久的历史。在新颖流量计大量涌现的形势下,节流式差压流量计尽管有范围度窄,安装维护麻烦以及压力损失大等重大缺点,但在振动较明显的压缩机房、鼓风机房,它仍然是可靠性高、稳定性好、抗干扰能力强的仪表。
用节流式差压流量计测量空气流量zui重要的是要处理好节流件前积水、变送器高低亚室内积水以及引压管线中积水问题。
a.节流件前积水问题。解决节流件前积水zui简单的方法是节流件的下部开疏液孔。但是空气管道不像蒸汽管道那样清洁。在蒸汽管道中因为与管道内壁接触的是水蒸气,而水蒸气在发生过程中一般都经过除氧工序,因此蒸汽中基本不含氧,经长期使用的蒸汽管,其内壁可能仅沉积微量的灰色粉末,除此之外不会有铁锈。而空气管道内则全然不同,灰尘和氧化铁难以避免,有时疏液孔被堵死。在停车检修时拆下节流装置,发现节流件正端平面上有积水的痕迹,就是证据。
*消除节流件前积水的方法是将节流装置安装在垂直工艺管上,或改用圆缺孔板或偏心孔板。其中,偏心孔板不确定度较小,优于圆缺孔板。
b.差压变送器高低压室内积水问题。图3.14(a)所示是典型的节流式差压流量计信号管路安装图,在被测流体为湿气体时,冷凝液理应不会进入差压变送器高低压室,但从现场反馈信息来看,实际情况是有时还会有微量水滴进入高低压室,。变送器差压范围较低时,此微量水滴会引起仪表零点的明显漂移。有些差压变送器设计有两个排放口,打开下排放口就可将凝液顺利排出。但是早期变送器只有中部的一只排放口,打开此口无法将高低压室内的凝液排净,zui后只得将变送器拆下,将凝液冲信号输入口中倾倒出来。
高低压室内积液的现象,经进一步分析,应该是变送器上方的一段管路由于环境温度变化将信号管中的水蒸气冷凝而沿着信号管往下流入高低压室。
防止冷凝液流入高低压室zui简单易行的方法是消除变送器上方的一段信号管路,将信号管路从下方引入变送器,如图3.14(b)所示,这样,即使高低压室内有微量冷凝液,也能依靠其自身重力沿着管路自动流回母管或沉降器。实践证明,这一方法是有效的。
c.引压管路内积水问题。在测量湿气体时,虽然安装信号管路已按照规程的要求保持坡度,可以避免冷凝液在信号管路内聚集。但在某些情况下,积水现象仍难以避免,其原因如下所述
图3.14被测流体为湿气体时信号管路安装示意
图3.15是环室取压节流装置安装在垂直工艺管道上时信号管路的规定安装方法。假设工艺管道中气体自下而上流动,那么,负压信号管路中可以保证没有凝液,因为信号管路内的凝液能畅通无阻地流回工艺管道,而正压信号管情况就不同了。因为正压信号是从均压环引出地,被测湿气体中的凝液充满节流装置的正端均压环空腔是毫无问题的(如图3.16所示)在正压管内气体压力同节流件正压端*相等时,U形管两边液位高度相等。在此基础上,如果节流件正端压力上升,则将均压环空腔中的水压向信号管路,按照流体力学关系式可知,正压管内的压力比节流件正端压力低一些,其数值同U形管两边液位高度差相等。从而引起差压信号的传递失真。
图3.15垂直管道信号管路连接 图3.16正压管内积水对压力信号传递的影响
消除信号管内积水的临时方法是扫线,依靠工艺管中的压力足够高的气体将积水冲走排到管外。但不久又依然如此。
*消除上面所述管内积水的方法是将节流装置取压方法改为法兰lin(lin=0.0254m)取压或D-D/2径距取压。
图3.17所示的信号管路连接方法也是有关资料中推荐的用于湿气体流量测量的典型连接方法。但是在大管径孔板流量计中,也存在一些问题。尤其是在雨天。雾天和大气湿度高的季节,空气中夹带的水较多,水滴自下而上撞击在节流件上,其中一部分进入均压环的空腔,进而流入沉降器,于是沉降器很容易被装满。现场巡回检查时,每天都排出很多水,如果上假日无人排污,就极有可能水满为患。
图3.17垂直管道信号管路连接
③涡街流量计。在无振动或无明显振动的场所,用涡街流量计测量空气流量,显著的优势是压损小、度较高、范围度较宽、维修工作量小。压电式涡街流量计能耐受0.2g的振动。在常压条件下,可测流速下限为6m/s。电容式涡街流量计,能耐受(0.5~1)g振动,在常压条件下,可测流速下限4m/s。因此在振动大的场所两种涡街流量计都不适用。与蒸汽流量测量一样,受涡街流量计zui大口径、zui大工作压力和zui高工作温度的制约,当口径大于400mm或流体压力高于4Mpa(有的公司产品为6.4Mpa)或流体温度高于420℃时,只能改用其他类型流量计。
④差压式均速管流量计。均速管流量计对大口径空气流量测量具有其*的优势,价格便宜、简单可靠、安装维修方便是其显著的优点,是涡街流量计和节流式差压流量计的补充。其检测杆选择、堵塞系数计算等将在第3.5节中讨论。
(2) 湿空气干部分流量测量问题
①湿空气干部分流量测量的必要性。在化工生产的氧化反应过程中,一般是将空气送入反应器,而真正参与反应的仅仅是空气中的氧,由于空气中的氮和氧保持恒定比例,所以测量得到进入反应器的氮氧混合物流量,也就可以计算出氧的流量。但是压缩机和鼓风机从大气中吸入的空气除了氮氧成分之外(微量成分忽略不计),总是包含一定数量的水蒸汽,而且水蒸气的饱和含量是随着其温度的变化而变化的。为了将氧化反应控制在理想状态,须对进入反应器的氮氧混合气流进行测量,也即将进入反应器的空气中的水蒸气予以扣除,得到湿空气的干部分流量,这是湿气体中需要测量干部分流量的一个典型例子。
②湿空气密度的求取。湿空气由其干部分和所含的水蒸气两部分组成。标准状态下湿气体的密度可用式(3.29)计算。
рn=рgn+рsn (3.29)
式中 рn――湿空气在标准状态下(101.325kPa,20℃)的密度,kg/m3;
рgn――湿空气在标准状态下干部分的密度,kg/m3;
рsn――湿空气在标准状态下湿部分的密度,kg/m3;
工作状态下湿空气的密度可按式(3.30)计算。
ρf=ρgf+ρsf (3.30)
рf――湿空气在工作状态下的密度,kg/m3;
ρgf――湿空气在工作状态下干部分的密度,kg/m3;
ρsf――湿空气在工作状态下湿部分的密度,kg/m3;
ρgf和ρsf分别按式(3.31)和式(3.32)计算。
ρgf=ρgn (3.31)
ρsf= (3.32)
式中 f――工作状态下湿气体相对湿度,0~100%;
psfmax————工作状态下饱和水蒸气压力;
ρsf————工作状态下水蒸汽密度,kg/m3;
ρsfmax————工作状态下饱和水蒸汽密度,kg/m3;
其余符号意义同式(3.28)。
③不同原理流量计测量湿空气干部分流量时的计算公式
a.频率输出的涡街流量计。频率输出的涡街流量计用来测量湿空气流量时,其输出的每一个脉冲信号都代表湿空气在工作状态下的一个确定的体积值。这时,要计算湿空气中的干部分,只需在从工作状态下的体积流量换算到标准状态(101.325kPa,20℃)下体积流量时,从总压中扣除水蒸气压力,如式(3.33)所示。
qvg=qvf
=3.6 (3.33)
式中 qvg——湿空气干部分体积流量,Nm3/h;
qvf——湿空气工作状态下体积流量,m3/h;
f——涡街流量计输出频率,P/s(1P=0.1Pa·s);
Kt——工作状态下流量系数,P/L。
b.模拟输出的涡街流量计。模拟输出的涡街流量计用来测量湿空气的干部分流量时,只有工作状态(pf、 f、Tf、Zf)与设计状态(pd、 d、Td、Zd)一致时,无需补偿就能得到准确结果。如果有一个或一个以上 不一致,可用式(3.34)进行补偿。
qv=Aiqmax= (3.34)
式中 Ai———涡街流量计模拟输出,%;
qmax————流量测量上限,Nm3/h;
pd————设计状态湿空气绝压,kPa(Mpa);
d——设计状态湿空气相对湿度;
psdmax————设计状态湿空气中饱和水蒸气压力,与pd单位一致;
Td————设计状态湿空气温度,K;
Zd————设计状态湿空气压缩系数。
c.差压式流量计。用差压式流量计测量湿空气的干部分流量要进行两方面的计算个是工况变化引起的工作状态下湿气体密度的变化对测量结果的影响,另一个是扣除湿空气中的水蒸气并换算到标准状态下的体积流量。将式(3.31)和式(3.32)代入式(3.30)得
ρf= (3.35)
式中,符号意义同式(3.29)~式(3.32)。
湿空气的干部分流量可用式(3.36)计算
q′v=qv (3.36)
式中 q′v——湿空气的干部分流量实际值,Nm3/h;
qv————湿空气的干部分流量计算值Nm3/h;
其余符号意义同式(3.35)
其中рf由式(3.35)计算得到。